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Abstract:   In this paper we introduce work done within the joint development project “ANKommEn”. We want to present 

techniques, which we use to enable cooperative 3D-SLAM with ground based vehicles. The presented 

methods are – in this special case – designed for, but not limited to, Velodyne VLP-16 sensors. Due to the 

obtained trajectories, sensor readings from other environmental sensors carried along can easily be mapped, 

too.

1 INTRODUCTION 

Highly automated machines - or even clusters of 

machines - designed for exploration tasks are capable 

of contributing to enhance efficiency for a broad 

variety of applications - for example during search 

and rescue missions. Due to this variety of different 

applications and environmental conditions, defining 

one single exploration task, without losing generality, 

is kind of complex. Hence designing a system, which 

fulfills all requirements is even more complex. More 

or less different exploration tasks need different types 

of environmental sensors to capture relevant 

information. For such a purpose, a distributed system 

approach seems reasonable. An approach which 

includes a cluster of dissimilar machines even can 

enhance functionality. Aerial vehicles are suitable to 

carry out tasks like spotting interesting areas in 

spacious terrain. Once such spots are located, ground 

based vehicles may be the best choice to examine 

those particular spots of limited spatial expansion in 

detail. The Institute of Mobile Machines and 

Commercial Vehicles, the Institute of Flight 

Guidance – both Technische Universität 

Braunschweig – and AirRobot GmbH & Co. KG, 

utilized within the joint development project 

“ANKommEn” (german acronym for: “Automated 

Navigation and Communication for Exploration”) - 

funded by the German Federal Ministry of Economic 

Affairs and Energy administrated by the Space 

Administration of the DLR - to develop such a system 

consisting of three UAVs and two UGVs equipped 

with environmental sensors like LiDAR, stereo 

vision, high-resolution RGB- and IR-cameras. 

Knowledge of the environment is a crucial factor 

not only for rescue forces whereas catastrophic 

scenarios, but for highly automated machines to 

operate as well. Due to the absence of an external 

human operator, the machine itself has to be capable 

of classifying traversable and non-traversable areas 

for example or detecting obstacles in its operating 

field. Therefore autonomous mobile machines 

operating in a dynamic environment are equipped 

with environmental sensors like RADAR, LIDAR 

and mono / stereo-vision. In unknown environments 

information gathered by previous sensor readings 

may be useful, too. Therefore collecting consecutive 

readings from those types of sensors and merging 

them into a single common frame of reference – 

hereafter called mapping – can be useful. The 

machine can use those information for path planning 

algorithms when revisiting a place for example. In 

addition a system capable of collecting readings from 

environmental sensors in such manner can be used by 

human to run autonomous exploration tasks as 

mentioned above. The reliable and accurate self-

localization is the elementary pre-requisite for 

building such maps. State-of-the-art localization 

solutions mostly are based on GNSS-receivers. Those 

are performing convincingly in the open country, but 

failing when the receiver isn’t in direct line of sight to 

a sufficient amount of satellites. By taking 

environmental sensor readings into account, the 

robustness and accuracy of self-localization can be 

improved in built-up urban environments for example 
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or even can be enabled in indoor applications. 

Concurrent self-localizing while simultaneously 

mapping the environment is often referred to the 

SLAM problem. Due to the last decades the interest 

and effort in this field of research grows steady. 

Cooperative mapping of the environment always 

deals with the problem of finding correspondences 

between sensor readings from different agents at 

potential different times. In dynamic environments 

and with mobile machines - without the loss of 

generality - this will lead to the problem of 

associating data between independent robot’s 

trajectories. This is the fundamental basis to find a 

distinct transformation which allows to convict all 

measurements to a single common frame of 

reference. 

To give the reader an overview about the past 

work made on the field of multi-agent pose graph 

SLAM, the following section will briefly introduce 

the most important concepts and techniques which are 

related to the work made in this paper. Afterwards 

methods developed within the context of 

“ANKommEn” are presented. Therefore section 3 

will deal with methods for constructing relative pose 

graphs, before section 4 will show up how data 

association between independent trajectories can be 

archived in an error-tolerant fashion. Afterwards 

experiments are shown to validate the described 

methods.  

2 RELATED WORK 

Due to the presence of massive noise while measuring 

with environmental sensors, a probabilistic approach 

for modelling the SLAM problem is standard in 

literature. The robot’s trajectory consists of a 

sequence of random variables 𝑥1:𝑇 = {𝑥1, … , 𝑥𝑇} 

where 𝑥𝑖 represents the robot’s pose at a given time 𝑖. 
While the robot is driving around it is collecting 

control inputs 𝑢1:𝑇 = {𝑢1, … , 𝑢𝑇}, which for example 

can be acquired using wheel encoders or other 

odometry measuring devices. Assuming the markov 

property holds, one can model those actions 

with 𝑃(𝑥𝑖|𝑥𝑖−1, 𝑢𝑖). It describes the probability that 

the robot is at exact the spot 𝑥𝑖 , because it is affected 

by a control input 𝑢𝑖, starting from pose 𝑥𝑖−1 and 

typically is modeled with Gaussians as presented in 

eq. 1. 

 

𝑥𝑖 = 𝑓𝑖(𝑥𝑖−1, 𝑢𝑖) + 𝑤𝑖  
 

(1) 

Where 𝑓𝑖  represents the process model and 𝑤𝑖  is 

normally distributed zero-mean process noise with 

covariance Λ𝑖 . Observations of the environment on 

the other hand are collected into the measurement 

vector 𝑧1:𝑇 = {𝑧1, … , 𝑧𝑇} and are modeled with the 

measurement model 𝑃(𝑧𝑘|𝑥𝑖𝑘  , 𝑙𝑗𝑘
) consisting of 

Gaussians as well (eq. 2). 

 

𝑧𝑘 = ℎ𝑘(𝑥𝑖𝑘
, 𝑙𝑗𝑘

) + 𝑣𝑘  (2) 

 

Here ℎ𝑘 defines the measurement function and 𝑣𝑘 

is the normal distributed zero-mean measurement 

noise with covariance ∑𝑘.  

Goal of SLAM algorithms now shall be to 

estimate the posterior probability of the robot’s 

trajectory 𝑥1:𝑇 and the map 𝑚. 
 

𝑝(𝑥1:𝑇 , 𝑚 | 𝑧1:𝑡 , 𝑢1:𝑇 , 𝑥0) 
 

 (3) 

Firstly introduced formulations of the SLAM 

problem were based on filtering techniques, while 

newer methods mostly are based on smoothing 

approaches. The filtering formulation only contains 

the current robot pose and map. Therefore filtering 

methods are often referred to online state estimation 

techniques. Famous filtering techniques for example 

are Kalman Filters (Smith 1990), Particle Filters 

(Hähnel 2003, Grisetti 2007) and Information Filters 

(Eustice 2005, Thrun 2004).  

Smoothing approaches on the other hand are 

formulated to estimate the whole robot trajectory 

from the full set of measurements in the mean of least 

squares error minimization. In general there are 

different ways to model the Smoothing approach of 

the SLAM problem. One can interpret equation 3 

according to a Bayesian Belief Net. The upper section 

of Figure 1 illustrates such a Belief Net. While the 

robot travels along a trajectory consisting of 3 poses, 

x0 x1 x2 x3

z1 z2 z3 z4 z5 z6 z7 z8

l1 l3l2

x0 x1 x2 x3

l1 l3l2

Figure 1: Different represntations for the SLAM problem. 

Top : According to Bayesian Belief Net. Bottom : 

According to Factor Graph 
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it takes for instance 8 measurements of 3 different 

landmarks. The lower section is reflecting the same 

situation as a Factor Graph representation, which will 

be discussed later on.  

In thoughts of the former representation and with 

the markov property in mind – which implies that the 

robot’s state depends only on the previous (but not 

before the previous) state – one can postulate the joint 

probability as described in eq. 4. The initial state 

𝑃(𝑥0) therefore can be chosen arbitrary. 

 

𝑃(𝑋, 𝐿, 𝑍)

= 𝑃(𝑥0) ∏ 𝑃(𝑥𝑖|𝑥𝑖−1, 𝑢𝑖) ∏ 𝑃(𝑧𝑘|𝑥𝑖𝑘  , 𝑙𝑗𝑘
)

𝐾

𝑘=1

𝑀

𝑖=1

 

 

(4) 

The most probable solution for the set of 

unknowns given all measurements can then be 

obtained by least mean squares error minimization. 

Therefore the maximum a posteriori estimate (eq. 5) 

for the whole trajectory 𝑋 ≜ {𝑥𝑖} and the map 𝐿 ≜
{𝑙𝑗} given the measurements 𝑍 ≜ {𝑧𝑘} and control 

inputs 𝑈 ≜ {𝑢𝑖} is formulated. 

 

𝛩∗ ≜ 𝑎𝑟𝑔𝑚𝑎𝑥𝛩𝑃(𝑋, 𝐿|𝑍)
=  𝑎𝑟𝑔𝑚𝑎𝑥𝛩𝑃(𝑋, 𝐿, 𝑍)
=  𝑎𝑟𝑔𝑚𝑖𝑛𝛩

− log 𝑃(𝑋, 𝐿, 𝑍) 

 

(5) 

Solving this leads to a non-linear least-squares 

problem. Suitable for solving such problems are for 

example Gauß-Newton or Levenberg-Marquardt 

algorithms. 

Lu et al. (1997) introduced a novel graph notation 

for the smoothing formulation of the SLAM problem. 

Those approaches have been significantly improved 

over the time (Olson 2006). Due to their nature of 

incorporating each and every measurement this group 

of approaches is often referred to the full SLAM 

formulation. A superb introduction to graph based 

SLAM is given by Grisetti et al. (2010). 

Dellaert (2005) introduced a novel approach to the 

SLAM domain, which had already proven 

successfully that it is capable of handling large 

problems with lots of unknowns in the domain of 

photogrammetry – there this technique is related to 

bundle adjustment - and in the domain of computer 

vision - where it is referred to the structure from 

motion problem. This novel approach to solve the full 

SLAM problem is called Square Root Smoothing and 

Mapping (Square Root SAM). It is based on 

factorization of the information matrix. A detailed 

description is given in (Dellaert, 2006). But for a 

better understanding of this paper, the fundamental 

ideas of this techniques shall be discussed briefly. 

The representation with Factor Graphs has some 

major practical advantages, because it represents the 

underlying optimization process in more detail. The 

evidence that the measures 𝑧𝑘 are known in fact shall 

be represented. Eliminating them as variables and 

introducing them as parameters of the joint 

probability factors over the actual unknowns yields to 

the factor graph representation (cf. Figure 1). 

Apart from classifying the underlying 

mathematical concept, one can subdivide multi agent 

SLAM methods with respect to processed data. Most 

effort in research has been made in the subject of 

landmark based methods. Fenwick et al. (2002) firstly 

extended single agent approaches to the multi agent 

domain. Most methods developed need initialization 

with known relative poses (Howard, 2006) 

(Anderson, 2008). A different often used technique is 

to gather direct relative pose measurements between 

robots (Howard, 2004). Therefore a common 

technique is to tag robots individually (Zhou, 2006). 

Franchi et al. (2013) introduced a novel method that 

is capable of handling direct relative pose 

measurements without the need of tagging them 

uniquely. Another often used technique to find 

transformations between multiple agents is to 

estimate the relative pose indirectly by comparing 

sets of landmarks. This is mostly done using any kind 

of RANSAC fashion algorithm (Montijano, 2011) 

(Cunningham, 2012). The major advantage of 

indirect methods is the fact that no physical 

rendezvous are required. Unlike to direct relative 

pose measurements, indirect methods are capable of 

inferring positional information from revisiting a spot 

another agent visited before – a time independent 

generalization of physical rendezvous – hereafter 

called encounters.   

The subject of multi agent pose graph SLAM has 

not been investigated in similar depth in the past, but 

recently few very interesting approaches have been 

published. Kim et al. (2010) introduced a method 

which handles multi agent pose graph SLAM in novel 

fashion. They are keeping individual trajectories for 

every agent and introducing the relative poses 

between those trajectories as unknowns to the 

optimization process.  

Furthermore it is important to notice, that the 

majority of presented methods in literature are 

treating data association as given. In reality this 

assumption is the first to fall. Erroneous data 

association in graph based SLAM usually leads to 

false positive constraints – i.e. observations from 

physically unequal objects will be constrained to be 
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equal. Introducing false positive constraints to the 

SLAM graph may lead to instant divergence of both - 

the trajectory and map. To avoid wrong positive 

entries, one is well-advised to introduce constraints in 

a strictly conservative fashion. In our work we are 

combining the strength of both methods. The 

robustness of a pose graph approach is combined with 

landmark based methods for place recognition 

purposes. Those in fact are useful to enable loop 

closing (or finding encounters in general) 

functionality in the total absence of any external 

position information (like GNSS). Our flexible 

hybrid approach is capable of associating data on the 

fly, when needed. Therefore the risk of introducing 

false positives due to errors in data association is 

minimized. 

3 CONSTRUCTING RELATIVE POSE 

GRAPHS 

A relative pose graph is constructed by poses and 

constraints connecting them. To increase accuracy – 

especially when building maps over large trajectories 

including lot of poses – one can introduce constrains 

not only between consecutive poses, but between 

arbitrary poses. This is mostly done using loop 

closing techniques. 

But factors do not necessarily need two poses. It 

is even possible to introduce factors, which influence 

only a single unknown – therefore called Single 

Factors. 

3.1 Factors 

Factors in the context of graph SLAM represent 

measurements (cf. eq. 4). One can distinguish factors 

by the number of unknowns affected by precisely that 

factor. Although it is conceivable (and useful in some 

cases as to be presented later on) the maximum 

amount of affected unknowns by a single factor 

within a single trajectory is limited to two. Therefore 

in the SLAM domain there are Single Factors – 

affecting only a single unknown – and Pairwise 

Factors – affecting a pair of unknowns.   

Single Factors can be obtained by sensor systems 

which measure “absolute” position. Absolute in this 

context means in reference to a global common 

reference frame (like WGS84). In the mobile 

machines community GNSS is the most common way 

to acquire such absolute position measurements. 

Pairwise factors on the other hand can be generated 

in various ways. 

Therefore the next section will give a brief 

introduction to the topic of generating Pairwise 

Factors. 

3.2 Pairwise Factors 

Introducing a Pairwise Factor in this context means to 

introduce a constraint between two poses. Such 

constraints can be obtained using odometry sensors 

for example. But Pairwise Factors can be generated 

with respect to readings from environmental sensor, 

too. Therefore consecutive sensor readings are 

matched. The resulting transformation obtained by 

suitable matching algorithms – like the famous 

Iterative Closest Point (ICP) algorithm – implies the 

movement of the acquiring sensor and therefore can 

be used to connect consecutive poses. 

In the next sections a few commonly used 

techniques to generate Pairwise Factors are briefly 

presented. 

 

3.2.1 Motion Models 

A motion model can predict motion in a pure 

mathematical way. This method is only useful, if in 

fact no sensor to measure motion is available or for 

guessing initial poses for more complex procedures 

(like guessing initial poses for ICP to avoid 

convergence to local minima). Such a model can be 

interpreted as a “continuous” source for Pairwise 

Factors. Experiments have shown that introducing to 

many factors to the factor graph does not lead to a 

higher precision in localization nor mapping. Because 

of this fact, an estimate from motion models should 

only be introduced – if used - when new sensor 

readings from low frequency environmental sensors 

arrive.  

Different motion models are suitable for different 

situations. The most popular motion models are the 

zero motion – which implies the absence of any 

motion - and the constant motion model. 

3.2.2 Odometry 

Most odometry sensors can be interpreted as 

“continuous” sources for factors as well, because the 

output frequency of such sensors in general is many 

times – up to few magnitudes - larger than frequencies 

of most environmental sensors. Therefore, 

accumulating readings from odometry sensors until a 

new reading from an environmental sensor arrives, 

seems reasonable, in this case, too. 
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3.2.3 ICP Pose Factors 

As mentioned earlier, ICP algorithms are perfect 

suitable for generating pairwise factors. In the past 

decades various papers about new ICP variants had 

been published. Therefore finding a suitable variant 

is not trivial. A superb introduction to this topic is 

given by Pomerleau et al. (2013). Figure 2 shows a 

simple ICP pipeline. 

 

 
Figure 2: The ICP pipeline 

First the incoming point cloud is sampled down. 

Due to the fact that computation effort raises 

exponential to the amount of data points within the 

cloud, down sampling is a common technique to 

accelerate computation. The most common filtering 

techniques use Voxel Grid Filters. This technique 

subdivides the three dimensional space in equidistant 

grid cells, i.e. the voxels (volumetric pixels). All data 

points within a voxel are then accumulated. Another 

– and way easier to handle and implement - often used 

technique is random sampling. 

After filtering, the point cloud is given to the ICP 

algorithm. If there had been a previous cloud the first 

step of each iteration will be to find corresponding 

data points in both clouds. Once correspondences 

have been established the incoming cloud is 

transformed with respect to minimize the sum of a 

squared error metric. After transforming the iteration 

step is done and if no abort criterion is satisfied, a next 

step is triggered. Commonly used abort criterions 

include minimal translation and / or rotation per step, 

maximum amount of iterations or a maximum 

summed squared distance from source to target cloud. 

After convergence, the transformation is introduced 

to the factor graph as a factor between consecutive (or 

in the mean of loop closure between arbitrary) poses 

at which the measurements have been acquired. 

Commonly used error-metrics are point-to-point, 

point-to-plane and plane-to-plane. 

Since probabilities are the decisive aspect in 

modelling the SLAM problem in a factor graph 

fashion as proposed in this paper, the factors have to 

incorporate uncertainties. Errors and the related 

uncertainties in scan matching arise from different 

type of sources. Censi (2007) discusses the most 

important errors and presents a method for effective 

estimation of covariance matrices in ICP. Those 

source for errors in estimating transformations with 

ICP are: wrong convergence, under-constrained 

situations – those appear when the environment of the 

robot does not dispose enough information to 

estimate the robot’s pose completely - and sensor 

noise. 

3.2.4 ICP-Sequence Pose Factors 

One major drawback using scan to scan ICP matching 

algorithms to introduce factors in a Factor Graph is 

the unbound error which arises from drift while 

matching the current scan only against the previous. 

Errors accumulate over time and the uncertainty in 

estimating the current pose growth unbound. 

To address this shortcoming, one can match the 

current scan with a map (Pomerleau, 2011). Figure 3 

shows a simple ICP-Sequence pipeline. 

 

 
Figure 3: The ICP-Sequence pipeline 

The difference to the plain ICP algorithm is, that 

the reference, i.e. the point cloud the reading will be 

matched against, does not only contain the previous 

scan but a whole map of the local environment. A 

crucial step is the map update step. One must not 

simply add the current transformed point cloud to the 

map, instead one has to search for the nearest 

Input Filters

Downsampled
Point Clouds

ICP

Map Update

Transformed
Point Clouds

Local
Map
Cut

Output Filters

Map of
environment

Point Cloud

Trans-
formation

Input Filters

Downsampled
Point Clouds

ICP

Transformation

Point Cloud



MCG 2016 – Vichy, France, October 5-6th, 2016 

 

P a g e  | 6 

neighbors of all points from the reading point cloud 

in the reference point cloud. Once the neighbors are 

determined a new point is added only if the distance 

to its nearest neighbor in the map point cloud exceeds 

a certain threshold. In our experiments we used 0.1 

meters for this threshold. This technique avoids 

unbound growth of the map and reduces errors from 

erroneous matching results of the ICP algorithm. 

3.3 Anchor Factors 

Based on the work of Kim et al. (2010) one can 

formulate the multi robot mapping problem in a 

single common frame of reference, while keeping 

single trajectories. Therefore every trajectory is based 

on an anchor, which explicitly represents the 

transformation to the common multi robot frame of 

reference. To be able to constraint independent 

relative pose graphs they are introducing factors 

affecting four unknowns. Besides both poses the 

encounter has been observed by, the relative 

transformation (the anchor) between both trajectories 

is affected, too. 

This means the relative pose between independent 

trajectories is in fact part of the underlying 

optimization procedure and therefore it may vary over 

time, when new constraints are introduced to the 

graph. 

4 DATA ASSOCIATION BETWEEN 

INDEPENDENT POSE GRAPHS 

The hardest problem in the domain of multi agent 

SLAM may be the problem of correct data association 

between independent trajectories. In the total absence 

of any external “absolute” position information, i.e. 

in the absence of GNSS signals, there is no trivial 

method for searching correspondences in 

independent trajectories. Running SLAM with three 

dimensional environmental sensors and browsing 

whole long-term trajectories for correspondences 

may easily thrash out any processing unit. The idea of 

our approach is to reduce the complexity in 

comparing independent trajectories by using general 

purpose features. Key points should be selected 

wisely, to compensate the loss of information which 

gets together with dropping most of the data points. 

Extracting features from 2D images is a widely 

spread technique in computer vision for example. 

Nowadays few techniques have been adopted for 3D 

point clouds, but they haven’t been developed to such 

an extent yet (Rusu, 2011) (Alexandre, 2012). 

Therefore in this paper we are using methods from 

two dimensional computer vision to improve 

performance.  

Those features are detected in real time. 

Therefore, while acquiring sensor readings, a higher 

amount of processing power is consumed, but once 

computed they can be used to compare trajectories in 

a small fraction of time compared to handling the full 

set of data points. 

4.1 General purpose features 

Li et al. (2010) introduced a novel approach to extract 

general-purpose features from LIDAR data. They 

have shown that their approach produces features, 

which are highly recognizable from a wide range of 

varying viewpoints. A slightly adopted version of that 

algorithm is used in this paper to generate features 

from point clouds acquired by LIDAR. 

A pipeline to extract such features from sensor 

readings is shown in Figure 4. The incoming point 

cloud is projected to the ground plane with respect to 

the robot’s roll and pitch. Therefore it is required that 

the robot is able to measure those unknowns with 

sufficient accuracy. Those measurements can arise 

from extern sensors like gyroscopes, but also can be 

determined indirectly by methods like ICP (cf. 

section 3.2.3 and 3.2.4). Each point is rendered to the 

ground plane by a two dimensional Gaussian kernel 

with varying kernel width to represent noise in sensor 

readings. Therefore the variance 𝜎2 which in fact 

reflects the kernel width, i.e. the affected amount of 

pixels, is obtained by the measuring uncertainty in 

distance 𝜎𝑠
2, the distance 𝑟 itself and the horizontal 

angular resolution of the LIDAR 𝛥𝛩 in a fashion like 

eq. 6 represents. 

Transform

Render data 
Points

Connect 
nearby Points

Top-Down-Ortho
Transformed Point Cloud

Gaußian blurred
Points

Feature 
Extraction

Image

Point Cloud

2D Features

Image 
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Figure 4: Extracting general purpose features 
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𝜎2 ≈ 𝜎𝑠
2+(𝑟 sin (𝛥𝛩))2 

 

(6) 

Nearby points – which are considered to belong to 

the same physical object - are then connected with a 

line, which is blurred similar to eq. 6. The gray value 

of each pixel then depends on the height measured in 

exact that cell. Therefore cells containing only a 

single measurement point aren’t rendered at all. This 

procedure produces images which contain in 

particular physical objects which are extended in 

height and therefore are suitable to match against. 

A Kanade-Tomasi corner detection algorithm 

(Tomasi, 1991) is then applied to the picture. 

Afterwards the image is scaled down by a power-of-

2 image pyramid. This technique is widely spread in 

computer vision and is used to detect features at 

different scales. Unlike readings from two 

dimensional mono-vision cameras – those typically 

used in computer vision – readings from LIDAR are 

scale invariant, therefore using an image pyramid in 

this fashion means to detect features at different 

physical scales. Therefore this method is capable of 

extracting features from both – physically large and 

small objects. In our experiments the pyramid level is 

set to 4. At lowest resolution a picture has only 1 / 256 

of original pixel size. This procedure is quite 

comparable to extracting commonly known features 

like SIFT or SURF. A typical output can be found in 

Figure 5. The scene is rendered from corner of a 

building. 

 

 
Figure 5: Typical output of general feature detection 

algorithm. Feature responses are drawn via covariance 

ellipses. 

Note that the radii of the covariance ellipses are 

scaled with a constant factor to make them visible in 

the picture. To generate more stable and robust 

features, one could reject features with respect to 

uncertainty in position defined by the covariance for 

example.  

 

 

4.2 Finding Encounters 

As described earlier finding encounters with the lack 

of initial position information can be a tough problem, 

but with those general purpose features described in 

section 4.1 one can use brute force methods to simply 

compare each pose of each trajectory with every pose 

on all other trajectories. The number of features 

generated per pose is about of 3 magnitudes lower 

than the amount of data points. A typical point cloud 

rendered with approximately 30.000 points contains 

less than 30 features. Nevertheless a direct 

comparison of feature sets with a RANSAC approach 

for example, would require to check each feature with 

any feature from the other set.  

To compute the similarity of sets of features we 

use an approach similar to that introduced by 

Cunningham et al. (2010). They are not matching sets 

of features in a direct fashion, but they are using the 

Delaunay triangulation to generate unique and 

invariant features. The Delaunay triangulation is a 

well-studied technique and is commonly used in 

computer graphics for example. A set of triangles 

𝑇(𝑃) in a plane are estimated so that none of the two-

dimensional points 𝑝𝑖  is inside the circumcircle of any 

triangle 𝑡𝑗(𝑃). For each triangle with edge length 

𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗 they compute the pair of features {𝑓𝑛
𝑗
}. 

Former is defined as the circumference (eq. 7) of the 

triangle. 

 

𝑓1
𝑗

= 𝑎𝑗 + 𝑏𝑗 + 𝑐𝑗  (7) 

 

And second is the area (eq. 8) of that triangle. 

 

𝑓2
𝑗

= √𝑠(𝑠 − 𝑎𝑗)(𝑠 − 𝑏𝑗)(𝑠 − 𝑐𝑗), 𝑠 =  
1

2
𝑓1

𝑗
 

(8) 

 

A set of correspondences 𝐶(𝑇𝑖 , 𝑇𝑗) can then be 

estimated. Therefore the sets of triangles are browsed 

for pairs of triangles, which have an error metric 𝑆 

less than a certain threshold 𝜏. 

 

𝐶(𝑇𝑖 , 𝑇𝑗) = {(𝑡𝑚, 𝑡𝑛) | 𝑡𝑖 ∈  𝑇𝑖 , 𝑡𝑛

∈  𝑇𝑗 , 𝑆(𝑡𝑚, 𝑡𝑛) < 𝜏} 

 

(9) 

The error metric is presented in eq. 10. 

 

𝑆(𝑡𝑚, 𝑡𝑛) = 𝑒((𝑓𝑚
1 −𝑓𝑛

1)
2

)𝑒((𝑓𝑚
2 −𝑓𝑛

2)
2

)
 

(10) 

  

To estimate outliers in the set of 

correspondences 𝐶, which occur due to ambiguities in 

this geometric approach, a simple RANSAC 
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algorithm is used. Therefore a transformation model 

– consisting of a two dimensional rotation and 

translation - is built by randomly sampled two 

correspondences. Afterwards other randomly 

sampled correspondences are checked against exact 

that transformation model. Therefore points from the 

source frame are transformed to the target frame with 

respect to the obtained transformation model. If the 

distance of the transformed source point to the target 

point is within certain bounds the correspondence in 

question is supposed to be an inlier. The likelihood 

for an encounter can then be postulated to the ratio of 

inliers to the total amount of potential 

correspondences.  

The processing pipeline to find encounters 

between independent relative pose graphs to finally 

estimate the relative pose between them is presented 

in Figure 6. 

 

 
Figure 6: Pipeline to estimate relative pose between 

Independent relative pose graphs. 

Once a promising initial guess for an encounter is 

made, we are estimating the probability for that guess 

to hold. Therefore we are searching for further 

encounters between both trajectories. This is done 

using loop closing techniques. A kD-Tree is set up to 

find nearby poses. Once nearby poses are determined 

the probability for that specific encounter is extended 

by the probability that those both new poses 

describing the same physical spot as well. This is also 

done using the two dimensional features, but with 

taking the centroids of both corresponding point 

clouds into account. If the centroids are that far away 

or even closer, it is highly probable, that both point 

clouds are representing the same physical scene. 

Afterwards a transformation between those poses can 

be estimated as well. A joint probability for the whole 

encounter can then be derived from the consistency 

of all estimated relative transforms between the 

trajectories in question. It is more likely that a 

probable transform was found, when all transforms 

are similar. 

If the joint probability for an encounter exceeds a 

certain threshold, the transforms between all nearby 

poses from different trajectories are then constrained 

by anchor factors.  

5 RESULTS 

Finally we want to present some experiments we did 

to validate the presented techniques. Therefore a tiny 

setup with two independent trajectories was chosen. 

It may be noted that the aim of this experiment was 

only to show the basic functionality of this 

techniques. Further analysis and long-term multi 

robot exploration tasks will be investigated in future 

and lay way beyond the scope of this paper. 

We ran this experiments with a SUMMIT XL 

robot equipped with a Velodyne VLP-16. To simulate 

two robots, a trajectory was cut in two pieces. While 

acquiring the sensor readings, no other positional 

information has been merged. The localization 

depends only on the results of the ICP Sequence 

method described in section 3.2.4. The relative pose 

estimation was performed as a batch operation in post 

processing. An online estimation is under 

development at the moment.  

Figure 7 illustrates a trajectory of a robot, which 

just left a factory building. To make the trajectory and 

Compare 
Feature Sets

Find Nearby 
Poses

Estimate 
Probability

Initial Guess

Feature Set

Estimate 
Transform

Trajectory

Relative Pose between
Trajectories

Discard
Encounter

Point Cloud

Figure 7: Robot trajectory (green) and map of the 

environment rendered to the ground plane. 
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map interpretable, it was rendered to the ground 

plane. The trajectory (green) consists of 60 poses with 

one reading from the Velodyne sensor per pose. 

Therefore we have a total amount of approximately 2 

million data points within that trajectory.  

Figure 8 shows a magnified section of the same 

image. There the trajectory of the robot is drawn in 

green, too. It is to mention, that each pose is 

connected to its previous pose with a Pairwise Factor 

generated via ICP-Sequence Pose Measurements (cf. 

section 3.2.4). Those cannot be seen, because the 

distance of poses of the trajectory is too small with 

respect to the size of the drawn poses. 

 
Figure 8: Magnified section containing the trajectory 

(green) and the local area around the robot 

Figure 9 shows another robot’s trajectory. This 

trajectory was build outside that factory hall in an area 

surrounded by multiple buildings and it contains 60 

poses as well. Due to the higher velocity of the robot 

while acquiring the sensor readings, the trajectory 

covers a broader space. The higher velocity may be 

the reason for some inaccuracies, which become 

apparent in the upper left corner of Figure 9.  

 

 
Figure 9: Robot trajectory (green) and map of the 

environment rendered to the ground plane. 

The same trajectory is shown in Figure 10. To 

give a detailed overview of the scene, the image is 

magnified. 

 

Figure 10: Magnified section containing the trajectory 

(green) and the local area around the robot 

Figure 11 shows both trajectories with an 

established encounter. The poses, an initial guess was 

first introduced by, are connected with a blue line. 

Other factors established afterwards, to calculate the 

probability for that encounter to hold are left out for 

transparency. 

 

 

 
Figure 11: Connected robot’s trajectories. From trajectory 

1 (green) to trajectory 2 (red). An encounter was 

established (blue). 

Figure 12 shows the same scene with the 

trajectories magnified. The Figure shows, that the 

algorithm is searching for the best set of 

corresponding features. Therefore it may occur, that 

a connection is not established between poses with 

the shortest distance, due to the fact that the distance 
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between poses from different trajectories is not 

known initially. 

 
Figure 12: Enlarged Part containing both trajectories. 

At least the same physical scene is presented as a 

three dimensional point cloud in Figure 13. The 

height is coded in colors. Furthermore the trajectories 

of both robots are drawn as well. 

 

 
Figure 13: 3D Point Cloud of the environment with both 

trajectories. 

5 CONCLUSIONS 

It could be shown that the presented methods are 

capable of handling multiple independent robot’s 

trajectories and build consistent maps from those 

trajectories. In future work long-term multi robot 

exploration tasks have to be investigated in much 

more detail. The approach has to be extended to aerial 

applications. While it is conceivable to handle point 

clouds from aerial based vehicles in a similar fashion 

like proposed in this paper, it has to be validated. 

In future work we would like to investigate if it is 

possible and rewarding to use techniques proposed in 

this paper to incorporate prior knowledge in the map. 

It is for example imaginable to generate general 

features (cf. section 4.1) from floor planes of 

buildings – for indoor applications – or from street 

maps. If we are able to reproduce similar features 

with readings from environmental sensors we may be 

able to incorporate prior knowledge to our maps and 

/ or we could obtain information about absolute pose 

of trajectories with respect to WGS84 for example. 
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